Már tervezik a jövő atomerőműveit

Már tervezik a jövő atomerőműveit

2008. június 24. 11:33, Kedd
Amennyiben Magyarországon a következő 15-20 évben új atomerőművet kezdenek építeni, biztos, hogy az úgynevezett harmadik generációs blokk lesz, mivel a következő - negyedik generációs - blokkok ekkorra még nem lesznek sorozatgyártásra készek - tudtuk meg Csom Gyulától, a Budapesti Műszaki és Gazdaságtudományi Egyetem professzorától.

Az első közüzemi villamosenergia-termelésre készült blokkot 1954-ben helyezték üzembe. Ezek az első generációs erőművek lényegében a katonai alkalmazásra készült reaktorok áramtermelésre átalakított változatai voltak. Ilyenek az 1970-es évek közepéig épültek, az ezt követő második generációs reaktorok - amelyek az 1990-es évek közepéig készültek - már lényegesen biztonságosabbak és korszerűbbek voltak. Ilyen a paksi atomerőmű is, s a jelenleg működő reaktorok 90 százaléka ebbe a generációba tartozik. A következő, harmadik generáció első blokkját 1998-ban Japánban helyezték üzembe, és a következő 15-20 évben is ezt a típust fogják gyártani, ám már készülnek úgynevezett harmadik+ generációs erőművek is, amelyek tulajdonképpen egy továbbfejlesztett változatot képviselnek, de működésüket tekintve alapvetően nem különböznek a jelenlegi, harmadik generációs társaiktól - mondta Csom Gyula.

Az atomerőművek fejlesztése természetesen nem állt le, a tudósok már dolgoznak a következő, negyedik generációs reaktorok különféle változatain, amelyeknek számos területen teljesen új vagy megváltozott alapelveket, biztonsági követelményeket kell kielégíteniük. Egyik ilyen követelmény a teljes üzemanyagciklus átalakítása, hogy biztosítani lehessen a nukleáris üzemanyagkészletek hatékony energetikai hasznosítását. A reaktoroknak alkalmasaknak kell lenniük a hosszú életű izotópokat tartalmazó nagy aktivitású radioaktív hulladékok új elvek szerinti kezelésére (transzmutálás), valamint hidrogén előállítására is. Mindezt úgy kell megvalósítani, hogy a villamos energia egységköltsége továbbra is alacsony maradjon, és sikerüljön a fajlagos beruházási, valamint az üzemanyagköltséget megfelelő határok korlátok között tartani. És legalább ennyire fontos az élettartam megnövelése is.


Az Egyesült Államok kormányzata 2000-ben kezdeményezte olyan új típusú, negyedik generációs atomerőművek kifejlesztését, amelyek 2025-2030 körül állhatnak üzembe. Ezt jelentős nemzetközi összefogással kívánják megoldani. A Generation-IV. projektben szinte kezdettől fogva részt vesznek a nukleáris fejlesztésekben jelentős szerepet játszó országok (az Egyesült Államokon kívül Kanada, Franciaország, Nagy-Britannia, Svájc, a Dél-afrikai Köztársaság, Argentína, Brazília, Japán és a Koreai Köztársaság). Az Európai Unió (az Euratom) 2003-ban lett a nemzetközi projekt tagja. (Az Euratom valamennyi uniós tagországot képviseli, 2006-tól Oroszország és Kína is tagja, jelenleg napirenden van India csatlakozása is.)

A Generation-IV. projekt által perspektivikusnak tekintett új reaktortípusok egyike sem előzmények nélküli, de a jelenlegi atomerőműpark ilyen típusokat gyakorlatilag nem használ. A szükséges fejlesztések csak jelentős volumenű kutatási programok megvalósításával érhetők el - hangsúlyozta Csom Gyula. Fontos követelmény a negyedik generációs atomerőművek fejlesztésében az üzemanyagciklus átgondolása, az új típusú üzemanyagciklus kifejlesztése.

A jelenlegi kutatások szerint hatféle reaktor jöhet számításba. A nátriumhűtéses gyorsreaktor (SFR - Sodium-Cooled Fast Reactor System) gyorsneutron-spektrumú, nátriumhűtéses zárt üzemanyagciklussal, az aktinidák hatékony kezelésére és a fertilis uránium hasadóanyaggá alakítására. A nagyon magas hőmérsékletű gázhűtéses termikus reaktor (VHTR - Very-High-Temperature Reactor System) pedig grafitmoderátoros, héliumhűtéses, nyitott üzemanyagciklussal. A szuperkritikus nyomású vízzel hűtött reaktor (SCWR - Supercritical-Water-Cooled Reactor System) magas nyomású és magas hőmérsékletű, vízhűtéses reaktor, amely a víz termodinamikai kritikus pontja felett üzemel.

A sorban a negyedik az ólom/bizmuthűtéses gyorsreaktor (LFR - Lead-Cooled Fast Reactor System), amely gyorsneutron-spektrumú, ólom vagy ólom/bizmut eutektikus folyékonyfém-hűtéses, zárt üzemanyagciklussal, a fertilis uránium hasadóanyaggá történő hatékony átalakítására és az aktinidák kezelésére. A gázhűtéses gyorsreaktor (GFR - Gas-Cooled Fast Reactor System) pedig héliumhűtéses gyorsreaktor, zárt üzemanyagciklussal. A hatodik a sóolvadékos reaktor (MSR - Molten Salt Reactor System), amely fissziós energiát termel cirkuláló olvadt só, plusz üzemanyag-keverékben, egy epitermikus neutronspektrumú teljes aktinida-recirkulációs üzemanyagciklus segítségével.

A nátriumhűtéses gyorsreaktornak a villamosenergia-termelésen túl elsődleges feladata a nagy aktivitású aktinidák - elsősorban a plutónium - hasznosítása, illetve kezelése. E reaktorok segítségével energetikailag hasznosíthatóvá válik a természetes urán teljes mennyisége, szemben a termikus reaktorok maximum egyszázalékos hasznosítási hatásfokával. Az SFR-rel épített atomerőművek különböző teljesítményű opciói állnak rendelkezésre, néhány száz megawattól 1500-1700 megawattig. Mivel a technológia alapvetően ismert, a tökéletesített, új generációs nátriumhűtéses reaktorok bevezetése már 2015-2020 között megkezdődhet.

A nagyon magas hőmérsékletű gázhűtéses termikus reaktor termikusneutron-spektrumú, nyitott üzemanyag-ciklusú VHTR rendszert a villamosenergia-termelésen kívül elsősorban magas hőmérsékletű folyamathő előállítására szánják, például szénelgázosítás és termokémiai hidrogéntermelés céljából. Fejlesztése a grafitmoderátoros, héliumhűtésű reaktorok széles körű tapasztalatain alapul, ezért van esély a viszonylag gyors kifejlesztésére és rendszerbe állítására. A magas hőmérséklet eredményeként a villamos energiát legalább 50 százalékos hatásfokkal termeli. A VHTR projektben Japán és Dél-Korea mellett az Európai Unió (Framatome) is fontos szereplő, a projektet a 6. keretprogram is befogadta. Rendszerbe állítása 2020 körül várható.


A szuperkritikus nyomású, vízzel hűtött reaktornak (SCWR) két üzemanyagciklus-opciója van: termikusneutron-spektrumú reaktor nyitott üzemanyagciklussal és gyorsneutron-spektrumú reaktor zárt üzemanyagciklussal, teljes aktinida-recirkulációval. Mindkét opció olyan vízhűtésű reaktort használ, amelyben a nyomás és a hőmérséklet a víz termodinamikai kritikus pontja (22,1 MPa, 374 Celsius-fok) felett van, ezáltal igen magas (körülbelül 44 százalék) átalakítási hatásfok elérését teszi lehetővé. Előnye a viszonylag alacsony fajlagos beruházási költség (kilowattonként kevesebb mint 1000 dollár), valamint nagy mérettartományban (400-1600 megawatt) életképes, ezáltal rugalmasan alkalmazkodik a piaci igényekhez. A rendelkezésre álló ismeretek alapján viszonylag gyorsan kifejleszthető. Az SCWR rendszerbe állítására - jó esetben - 2020-2025-ben kerülhet sor.

Az ólom/bizmuthűtéses gyorsreaktor legfontosabb jellemzői a gyorsneutron-spektrum, a zárt üzemanyagciklus, a fertilis urán hatékony átalakítása plutóniummá és az aktinidák kezelésére (transzmutációjára) való képesség. Az LFR rendszer kiváló minősítésű a fenntarthatóságban (mivel zárt üzemanyagciklust alkalmaz hasadóanyag-újratermeléssel), a proliferáció-állóságban és a fizikai védelemben (mivel hosszú kiégési ciklussal rendelkezik). Jónak minősül a biztonság és a gazdaságosság tekintetében is (elsősorban a többfajta termék előállíthatóságának köszönhetően). Ennek ellenére - legalábbis egyelőre - Európában zsákutcának tartják ennek a reaktortípusnak a fejlesztését. Rendszerbe állítása legkorábban 2020-2025-ben várható.

A gázhűtéses gyorsreaktor (GFR) gyorsneutron-spektrumú, héliumhűtéses, zárt üzemanyag-ciklusú reaktor, magas kilépési hűtőközeg-hőmérséklettel (850 Celsius-fok). A magas hőmérséklet lehetővé teszi, hogy a GFR-hez közvetlen ciklusú gázturbinás rendszer kapcsolódjék (Brayton-ciklus), ami magas energiaátalakítási hatásfokú (48 százalék körüli) villamosenergia-termelést tesz lehetővé. A projektet az unió 6. keretprogramja befogadta, üzembe állására legkorábban 2020-2025-ben kerülhet sor.

A sóolvadékos reaktorban az urán- és/vagy plutónium-fluoridot tartalmazó olvadt sókeverék szolgál üzemanyagként és hűtőközegként egyaránt, a rendszer fejlesztése az 1940-es, 1950-es évekre nyúlik vissza. Az MSR rendszer a zárt üzemanyagciklus és a radioaktív hulladék kiégetésében mutatott kitűnő képessége miatt a fenntarthatóság szempontjából kiválónak minősül. Jónak számít a biztonság, a proliferáció-állóság és a fizikai védelem tekintetében is. A projektet már az 5. keretprogram óta befogadta az Európai Unió, kifejlesztése várhatóan csak 2030 körül fejeződhet be.

Listázás a fórumban 
Adatvédelmi beállítások