Az űrrepülőgépek hattyúdala IV. rész

Az űrrepülőgépek hattyúdala IV. rész

2011. május 9. 22:23, Hétfő
A gazdaságosan üzemeltethető űrsikló mítosza

1969-ben a Caltech (egy neves kaliforniai egyetem) mérnökkarának vezetője, Francis Clauser azt hangoztatta előadásain, hogy még az ő életében eljön az az idő, amikor az űrutazás az átlagpolgároknak is elérhető lesz, sőt, a Holdutazás is olyasmi lesz, mint egy karibi kirándulás. A Lockheed főmérnöke, Max Hunter pár évvel később úgy vélte, hogy évi 95 űrrepülőgép-repüléssel egy-egy út költsége 350 000 amerikai dollár körül alakul, vagyis egy kilogramm feljuttatási költsége mintegy tizenöt és fél dollár lesz.


Egy Dnyepr-1 indítás, 2220 dollár/kg fajlagos árával a legolcsóbb hordozóeszköz jelenleg, amit annak köszönhet, hogy kivont ex-szovjet R-36 interkontinentális ballisztikus rakétára épül

Ma, 2011-ben egy kilogramm hasznos teher feljuttatása a világűrbe még a legolcsóbb megoldásokkal (átalakított ex-szovjet hordozórakétákkal) is 2220 dollárba kerül, de a nyugati hordozórakéták esetén ez az összeg inkább 5 - 10 000 dollár körülire jön ki. Az űrrepülőgép pedig függően attól, miként számolunk, 17 700 - 35 000 dollár. Tehát meglehetősen messze vagyunk a 15,5 dolláros összegtől, de vajon mi indokolhatta anno ezt a töretlen optimizmust?

Az ehhez szükséges követelményeket George Mueller 1969 októberében vázolta fel Washingtonban. Előadásában három kritikus pontot említett, ahol a költségeket meg lehet fogni:
  • Egy igen hatékony, folyékony hidrogént égető rakétahajtómű, amely 100 repülést bír ki.
  • Olyan hővédő pajzs, amely újrafelhasználható, és két repülés között minimális ellenőrzést és karbantartást igényel
  • Olyan belső ellenőrző rendszer, amely képes a gép összes kritikus elemét figyelemmel kísérni, az esetleges meghibásodásokat előre jelezni, és mindezt a földi személyzet nélkül, egyszerűen tegye meg, így a karbantartásokat és javításokat sokkal gyorsabban és célirányosabban lehessen elvégezni.

    Mueller a harmadikat nevezte a legnagyobb kihívásnak. Az X-15 esetén egy repülés után több napos ellenőrzés következett. A hajtóművet és az üzemanyagrendszert nyomáspróbának vetették alá, a hátsó sítalpakat röntgennel világították át repedéseket keresve rajtuk (ennek oka a leszálláskor fellépő nagy erők voltak), a hidraulika rendszernél pedig minden egyes elemre kiterjedő szemrevételezés volt előírva. Ha ezen túl voltak, akkor egy hajtóműtesztet hajtottak végre, amihez egy pilótának a pilótafülkébe kellett ülnie, és rövid időre begyújtani a hajtóművet. Csak ha mindezeken sikeresen átesett a gép akkor indulhatott a következő útjára.

    Ez egy űrrepülőgép esetén a sokkal bonyolultabb rendszerek miatt jelentősen több időt venne igénybe, márpedig ha egy-egy repülés után hetekre, hónapokra van szükség az ellenőrzésre és a karbantartásra, akkor az rengeteg pénzt emészt fel. Ezen kívül a gép addig nem képes a feladatát ellátni, nevezetesen hogy embereket és hasznos terhet vigyen a világűrbe. Vegyük akkor végig ennél a járműnél is ezeket a pontokat:
    1. A hajtóműről az előbb volt szó; az SSME a várakozások szerint kevés karbantartást fog igényelni, és a 100 repülésenkénti cseréje hatalmas előrelépés az egyszer használatos rakétákhoz képest.

    2. A hővédő pajzs terén háromféle elképzelés versengett. A hőelnyelő (heat sink) megoldásnál a hőt fém szerkezeti elemek vezetik el a hűvösebb részek felé, melynek során ugyan átmelegszik az egész gép, de az egyes elemek a kívánt hőmérsékletnél nem melegednek tovább. A második megoldás a már bevált elégő hőpajzsok, ahol az előre felvitt hővédő anyag elég, és közben hőt von el, így hidegen marad az alatta lévő test. A harmadik megoldás a szén alapú kompozit anyagok alkalmazása volt, mivel a szén nagyon jól viseli a magas hőmérsékleteket. A V-2 rakétákban a hajtómű fúvócsövénél helyeztek el kis vezérsíkokat, amelyek a kiáramló forró gázokat eltérítve tudták kormányozni azokat, így irányítva a rakétát. A "heat sink"-féle megoldás az X-15 esetében sikeresen volt tesztelve, az elégő hőpajzsok sikeresen bizonyítottak a Mercury, Gemini és Apollo programokban, az új szén és szilikát alapú hővédő pajzsok pedig hatékony és könnyű újrafelhasználható hővédelemmel kecsegtettek.

    3. A számítógépes felügyelet és hibafelderítés egy sokkal trükkösebb dolog. Általános jelenség, hogy egy meghibásodott autónál próba-szerencse alapon cserélnek ki egy alkatrészt, aztán vagy megszűnik a hibajelenség, vagy sem. Utóbbi esetén lehet újabb próba-szerencse alapon folytatni a kísérletezést, kizárva persze a már kicserélt alkatrészt. Ekkoriban azonban a repülőgépeknél is ez volt a bevett szokás, az American Airlines egy belső feljegyzése például azt említi, hogy hat hónap alatt a légkondicionáló berendezéssel kapcsolatos panaszok 44%-a, az automata pilótát érintő hibajelzések 52%-a volt megoldatlan a karbantartás és alkatrészcserre után. Vagyis üzleti szempontból nézve olyan alkatrészt cseréltek ki a gépekben, amelyek feltehetően hibátlanul működtek, ezáltal pedig felesleges költségekbe verték a céget.

    Klikk ide!
    Az Endevour űrsikló az Orbiter Processing Facility hangárjában a visszatérés utáni ellenőrzésen. Mueller aligha ilyesmire számított eredetileg...- klikk a nagyobb képhez!

    Tehát egy olyan rendszerre lett volna szükség, amely rögzíti az adatokat, minél többet, ezen adatokkal felfegyverkezve pedig a karbantartó személyzetnek már nem találgatnia kell, hogy mi is romolhatott el, hanem rögtön láthatja már az adatokból, hol is kell keresni azt.

    A PanAm légitársaság 1970-ben kezdte meg az éles tesztelést egy olyan hibafelderítő rendszeren, amely begyűjtötte a működési adatokat a Boeing 707-es mind a négy hajtóművétől, és összehasonlította azokat a korábban rögzített adatokkal. Ha eltérést tapasztalt, akkor egy nyomtató a pilótafülkében egy üzenetet nyomtatott ki, amelyen szerepelt a hajtóműtől begyűjtött, a normálistól eltérő adat. Ugyan ezen adatok egyszerűen megjeleníthetőek egy műszerfalon, de azt nem lehet elvárni a személyzettől, hogy a hajtóművenként több tucatnyi mért változót folyamatosan kövessék. Mivel azonban a rendszer nem csak követte, de rögzítette is az adatokat, így később a karbantartó személyzet láthatta, hogy mi válthatta ki az abnormális viselkedést, így pedig könnyebb volt a hibaforrás lokalizálása és a hiba elhárítása. Vagyis a civil légi repülésben már a NASA-tól függetlenül is beindult a számítógépes monitorozás kifejlesztése és annak gyakorlatba való átültetése.

    Mueller abban bízott, hogy a Saturn - Apollo rendszerhez szükséges 20 000 fős szakembergárdát a fenti módszerekkel a töredékére csökkentheti, a költségek egy igen jelentős része ugyanis a hatalmas kiszolgálórendszer üzemeltetése volt. Ha a 20 000 fő helyett pár száz fő, egyetlen űrközpontban meg tudja oldani az űrrepülőgépek kiszolgálását, akkor egy-egy indítás költségét a Saturn V. 185 millió dolláros árához képest a töredékére, 1 - 2,5 millió dollárra csökkentheti. Ez ugyan még messze van a Max Hunter által említett 350 000 dollártól, ám még így is drasztikusan olcsóbbá tehetné a világűrbe jutást.

    Noha a NASA általános tapasztalata az volt, hogy a becsült költségekhez képest általában mindig csak közel háromszoros áron sikerül megvalósítaniuk a kitűzött célt, Mueller meghatározta a költségcsökkentés irányát, és ezek mindegyike elérhetőnek tűnt (hatékony SSME hajtómű, többféle, költséghatékony hővédő pajzs illetve már a civil iparban formálódó számítógépes hibalokalizáció). Az pedig, hogy NASA és a Légierő úgy tűnt, közös utat követ, vagyis az űrrepülőgép számára biztosítva van a folyamatos munka, arra utalt, hogy a magas fejlesztési költségeket a jól kihasznált űrrepülőgépek majd alacsony működési költségekkel hálálják meg.

    A Nixon-kormányzat viszont 1970-ben kereszttűz alá vette a teljes űrrepülőgép-programot. A költségvetésért felelős szakmai gárda nagyobb rálátást akart arra, hogy mire alapozza a NASA az optimista jövőképét, az űrkutatásért felelős iroda pedig kelletlenül védekező pozícióba volt kénytelen húzódni, és korábban még nem emlegetett tényezőket hoztak fel érvként.

    Klikk ide!
    A Voyager 2 űrszonda indítása egy Titan III. hordozórakétával 1977-ben


    A fő érv a vitában az volt a pénzügyesek számára, hogy összehasonlításnak ott volt az ekkor már kiforrott Titan III. hordozórakéta, amit a légierő számára fejlesztettek ki. Tehát az ő szemszögükből nézve ha ezt használnák az űrrepülőgép helyett, akkor fejlesztési költség nincs, csak az indítások költsége. Természetesen ha a NASA által felvezetett számokat nézzük, a Titan III. nem versenyezhet az űrrepülőgéppel az indítások árát figyelembe véve. 10 évre viszonyítva a Titan III. már viszonylag szerény indítási mennyiség (évi 28 darab) esetén is elvérzik (igaz minimális mértékben), mivel minden egyes indításnál elveszik a hordozóeszköz. Az űrrepülőgépet ugyan még ki kell fejleszteni, és persze drágább legyártani, de egy-egy út költsége mégis annyival alacsonyabb, hogy hosszú távon kifizetődnek ezek a költségek.

    Azonban a költségvetési bizottság a saját, gazdasági alapú számítási modelljével számolt, amely a pénz értékcsökkenését is figyelembe vette, és a programok költségét befektetésnek tekintette. Mivel az állam pénzéről volt szó, ezért meghatározták, hogy milyen célú felhasználás milyen prioritást kap. Például egy autópálya vagy egy iskola magas prioritást élvez, mivel a segítségével az állam többet kaphat vissza, mint amennyibe a befektetés került. Az űrprogramok a költségvetési bizottság szerint alacsony prioritást élveztek, mivel közvetlenül keveset nyer belőle az állam, ráadásul nagy a kockázat mértéke, óriási a túlköltekezés, sok a baleset (mint az Apollo-1 esete) és így tovább.

    Innen nézve tehát az állam jobban járna, ha az űrkutatásba fektetett pénzt inkább máshol fektetné be, emiatt aztán a fejlesztési költségek figyelembe vételénél gyakorlatilag egy előre meghatározott inflációval kellett számolni. Ez pedig hátrányosan érintette az űrrepülőgépet, ahol a fejlesztési költség jelentős, és a működés első szakaszában jelentkezik. Szó se róla, gazdasági szempontból érthető nézet, ám a hosszútávú programok szempontjából nagy érvágás.

    Óriási változás ez ahhoz képest, hogy a NASA költségvetésére miként tekintettek alig 10 évvel korábban, amikor politikai, illetve katonai indokok fűtötték a költségvetési döntéseket, és szavaztak meg hatalmas pénzeket a NASA-nak. Ennek hirtelen vége lett, a szervezetnek be kellett bizonyítania, hogy az űrrepülőgépbe érdemes befektetni az állam pénzét. A bizottság azt találta a számokban, hogy évi 55 indítás alatt az űrrepülőgép-program egyszerűen nem éri meg. Márpedig ilyen sok indítás akkor jön össze, ha a légierő harmincat bevállal ebből, amit pedig a Corona kémműholdak alapján állapítottak meg. Csakhogy az 1970-es években már jóval nagyobb kémműholdakat terveztek, amelyekből kevesebbet kell Föld körüli pályára állítani, mint a kvázi egyszer használatos Corona-kból.

    A NASA ellentámadásba lendült. Egyfelől igyekeztek megmenteni az űrállomás-programot, amit nem csak a NASA, de a nemzet szempontjából is kiemelkedően fontosnak tartottak, egészen odáig menve, hogy a világűrben való gyártás is rentábilis lehet gazdaságilag. Példának a mikroelektronikai szektort hozták fel, amely profitálhat a súlytalanságban való gyártásból - arról ugyan mélyen hallgattak, hogy pontosan milyen módon.

    A másik indok már ehhez kapcsolódott: ha megvan az űrállomás, és annak a személyzetét megnövelt Gemini-szerű űrhajókkal kell kéthetenkénti indításokkal váltani, akkor az 1,6 milliárd dollárba kerülne évente, az űrrepülőgéppel viszont csak 480 millió dollárt kóstálnak ugyanez. Ez már elég komoly anyagi indok volt, hogy az űrrepülőgépet hozza ki győztesnek. Persze itt is volt egy kis csúsztatás - tudniillik az űrrepülőgép ekkor már alapvetően a légierő igényeinek megfelelően egy nagy teherszállító jármű volt, nem pedig az a kisebb, űrállomások számára kiszolgáló feladatot ellátó változat, amit eredetileg a NASA elképzelt.

    Hogy a nagy rakteret valahogy kihasználják, egy teljesen új koncepcióval álltak tehát elő. Mivel az űrrepülőgép raktere hatalmas, ezért nagyméretű, kényelmesen szerelhető, egységesített műholdakat lehetne a segítségével Föld körüli pályára állítani. A műholdak hagyományosan kicsik és "összecsomagoltak", miután a világűrbe jutottak, kinyílnak a napelemtábláik, antennáik. Mivel pedig nincs mód arra, hogy a világűrben egy beragadt napelemet vagy antennát, esetleg egy meghibásodott elemet kicseréljenek, ezért nagyon alaposan tesztelik ezeket a Földön, hogy odafent már ne következhessen be hiba.

    Ha viszont egy egyszerűbb, nagy méretű, könnyen javítható műholdat építenek, ahol szükség esetén a hibás elemeket egyszerűen cserélni lehetne egy űrrepülőgép-úttal, akkor a költséges és időigényes földi tesztelések jórésze egyszerűen okafogyottá válna. Ha pedig a műholdakat egységesítenék, például mindegyikre ugyanolyan csatlakozási pontok kerülnének, ugyanolyan napelemek, fedélzeti rendszerek, és így tovább, akkor tovább csökkenthetőek az árak. A saját számításaik szerint noha egy ilyen műhold tömege a korábbiak háromszorosa lenne, és egy nagyságrenddel több helyet foglalna, a gyártása csak kétharmad annyiba kerülne. Ráadásul mivel az űrrepülőgép segítségével könnyen javíthatóak, cserélhetőek a komponensei, ezért az élettartama is hosszabb.


    Balra egy hagyományos "szétnyíló" műhold, jobbra a javasolt "egységesített"
    műhold vázlata

    Apró probléma, hogy a NASA nem kereste meg a civil műholdakat üzemeltetni szándékozó cégeket, és nem vette figyelembe, hogy a trendek szerint a műholdak elég megbízhatóak kezdtek lenni, a tesztelésre fordított költségek mértéke pedig láthatóan csökkenő tendenciát mutatott. Az pedig, hogy a kommunikációs műholdak olyan magas pályán fognak keringeni a jövőben, amely az űrrepülőgép által elérhetetlen, szintén nem verték nagydobra. Tehát a civil javító-utakra vonatkozó érvelés mögötti tartalom igazság szerint légből kapottnak tekinthető.

    Tovább nehezítette a NASA dolgát, hogy a költségvetési bizottság úgy találta, hogy az a legjobb megoldás, ha a meglévő infrastruktúrát alakítják hozzá az űrrepülőgéphez. Ott volt a Saturn V.-höz épített VAB, ahol a rakétát összeállították, és ott volt a két hatalmas kúszó, gigászi, teherrel együtt akár 3 000 tonnás lánctalpas szörny, amelyek a VAB-ból az indítóállásba vitték a rakétát (később az űrrepülőgépet) indítóasztalostól, és ott volt az indítóállás maga. A költségvetési szempontok szerint új infrastruktúrát kiépíteni drágább, hiszen számolni kell a befektetés értékcsökkenésével. Hogy hosszútávon ez milyen következményekkel jár, illetve a fejlesztés, majd az üzemeltetés folyamán ez milyen nehézségeket jelenthet, nem mérlegelték, hiszen azt akkor és ott nem láthatták előre.

    Márpedig 1971-ben az űrrepülőgép-program költsége a következő 10 évre már 9,9 milliárd dollárra volt becsülve. Komoly számmisztikai harcok kezdődtek a gazdasági matematika szintjén, különféle felvázolt kihasználtsági arányokat figyelembe véve. Ekkora már tucatnyi különféle fellövési terv készült, évi 28 indítástól kezdve az évi 57 indításig bezárólag. Ezek átláthatósága azonban egy labirintuséval vetekszik, amely egy kártyavár stabilitásával párosult. A felvázolt kihasználtsági tervek ugyanis olyan bizonytalanságokra épültek, hogy például évi hány civil műhold-karbantartó útra indul az űrrepülőgép - olyasmi, amit előre megjósolni se lehet. Tovább nehezíti a tisztánlátást, hogy ekkor már egy-egy indítás 4,6 millió dollár körül mozgott. Mueller alig egy évvel korábbi 1 - 2,5 milliós összege tehát máris megduplázódott-megnégyszereződött, és az űrrepülőgép még el sem hagyta el a tervezőasztalt!

    A költségvetési javaslat egy tollvonással úgy határozott, hogy az eredeti űrrepülőgép elképzeléshez szükséges 4,5 - 5 milliárd dolláros éves NASA költségvetés helyett a mintegy 3,2 milliárd dolláros szint körüli tartásnál maradnak. Ez túl kevés volt az eredeti "A" fázisos űrrepülőgép tervek megvalósításához, kvázi azt mondva a NASA-nak, hogy "ha akarjátok az űrrepülőgépet, akkor olcsóbban fejlesszétek ki".


    A NASA költségvetése a teljes amerikai költségvetéshez képest százalékarányban. Jól látható, hogy az 1960-as évek második felében komoly zuhanás vette kezdetét.

    A NASA másfél év alatt három komoly felütést kapott. Először 1969. második felében a várt plusz pénz helyett további egy milliárd dollárt megvontak tőle, és az Apollo-program eredeti ütemtervét a csökkentett költségekhez kellett igazítani. Utána az 1980-as évek elejére tervezett Mars-program, a hozzávaló nukleáris hajtóművel esett áldozatul, ráadásul az 1970-es években gyakorlatilag választaniuk kellett, hogy az űrrepülőgépet vagy az űrállomást pénzelik. Az űrrepülőgépet választották, de legalább a Saturn hordozórakétára épülő űrállomással, a Skylab-programmal vigasztalódhattak, és azzal a jövőképpel, hogy majd az 1980-as években talán jut keret egy "rendes", nagy méretű űrállomásra, amelyet eredetileg is terveztek. A harmadik felütés pedig ezek után azzal szembesülni, hogy már az űrrepülőgép is késélen táncolt.

    (folytatjuk)

  • Listázás a fórumban 
    Adatvédelmi beállítások