Az űrrepülőgépek hattyúdala IV. rész

Az űrrepülőgépek hattyúdala IV. rész

2011. május 9. 22:23, Hétfő
Az űrrepülőgépnek feladata az lett volna, hogy a világűr az átlagemberek számára is elérhető legyen. A túlzott optimizmus fűtötte reményekről szól az űrrepülőgépek történetét felelevenítő cikksorozatunk mostani része.

- I. rész - | - II. rész - | - III. rész - | - IV. rész -


Az SSME születése

Az űrrepülőgép talán legfontosabb alkatrésze a hajtómű, ennek segítségével juthat fel a világűrbe. A rakétahajtóművek fejlesztése gőzerővel folyt az Egyesült Államokban az 1940-es évek második felétől, és az 1960-as évekre öles lépésekkel el is jutott a Saturn V. óriásrakéta folyékony hidrogént és oxigént égető J-2 hajtóműveihez, amelyek a 2. és 3. fokozatban foglaltak helyet. Az első fokozat hatalmas F-1 hajtóművei folyékony oxigént és kerozint égettek el. Ugyan tolóerő tekintetében egyetlen F-1 elegendő lett volna a formálódó űrrepülőgéphez, a jobb hatékonyság miatt a folyékony hidrogént égető hajtóműveket preferálta a NASA. A kétféle üzemanyag közül a kerozin mellett szól viszont, hogy sokkal könnyebben tárolható és kezelhető. A folyékony hidrogén forráspontja -252,87°C, vagyis ennél alacsonyabb hőmérsékleten kell tárolni és megoldani a szállítását a csővezetékek és pumpák rendszerén át, ami bizony kihívás a mérnököknek.


A NASA emberes repüléseihez az 1960-as években használt rakétahajtóművei. A jobb szélső F-1-es a Saturn V első, a J-2 a második és harmadik fokozatában használt típus

Az űrrepülőgéphez azonban a NASA mindenképpen folyékony hidrogént égető hajtóművet szeretett volna, így a potenciális gyártókat Von Braum megkérte, hogy vessék papírra, milyen megoldással élnének az SSME (Space Shuttle Main Engine ~ Űrrepülőgép Főhajtómű) számára. A három felkért gyártó a Pratt & Whitney, az Aerojet és a Rocketdyne volt.

A korábbi években a légierő és a NASA is igyekezett hatékonyabb meghajtásokat keresni, ugyanis abban mindenki biztos volt, hogy lenne még hova fejlődni. A fejlesztések egyik iránya a hagyományos rakétahajtóművek problémájának kiküszöbölése volt az emelkedés közben fellépő légköri nyomásváltozás során. A rakétahajtómű alapvetően két részből épül fel: az égőtérből és a úvócsőből. Előbbi a nevéből sejthetően az, ahol az üzemanyag és az oxidálószer elég, a fúvócsővön keresztül pedig az égéstermék távozik az égőtérből, illetve fokozza a gáz áramlási sebességét. A tolóerőt Newton harmadik törvénye alapján az égőtér és a fúvócső falán fellépő reakcióerő adja a hajtóműnek, és ezáltal a rakétának.

A hagyományos rakétahajtóműnél a fúvócső kúpos vagy harang alakú, de éppen emiatt fellép egy apró probléma: a kiáramló gázok áramlása nagyban függ a külső légnyomástól. Ha a külső nyomás és a kilépő gáz nyomása ideális, akkor a gázáram ideális formát vesz fel, ebben az esetben a legjobb a hajtómű hatásfoka. Ha a külső légköri nyomás magasabb, mint a kilépő gáz nyomása, akkor először a fúvócső végétől a gázáram összeszűkül, ha pedig jóval magasabb, akkor az áramlás még a fúvócső vége előtt elválik a fúvócső falától. Ez utóbbi roppant veszélyes, mert a gázáram így kontrollálatlan lesz, a tolóerő iránya eltérhet a hossziránytól, illetve a fellépő erőhatások miatt megsérülhet a fúvócső.


Az égéstermékek áramlása tengerszinten (balra) és vákumban (jobbra) egy kis magasságra optimalizált rakétahajtómű esetén

Ebből már sejthető, hogy bizony nem egyszerű dolog a hajtóművek maximális hatásfokát elérni. A többfokozatú rakétáknál a légnyomás problémáját úgy oldják meg, hogy az első fokozat alapvetően a sűrűbb, alsó légrétegek nyomására van optimalizálva, a második fokozat már a magasabban uralkodó alacsonyabb légnyomáshoz van tervezve, a harmadik (és negyedik) fokozat hajtóműve (ha vannak) pedig már közel a légüres tér követelményeihez van kialakítva.

Az űrrepülőgép hajtóműve viszont a felszállástól a világűrbe érésig működne, tehát kompromisszumot kell kötni. Úgy kell kialakítani, hogy az induláskori sűrű légkörben a gázáram ne váljon el a fúvócsőtől, ugyanakkor a csaknem tökéletes vákumban is kellően hatékony legyen.


Balra egy hagyományos, jobbra egy aerospike rakéta-hajtómű ábrája. Jól láthatók a két megoldás közötti fő különbségek

Van erre a problémára egy pofonegyszerű megoldás, az un. Aerospike- (szabados fordításban a meglehetősen rosszul hangzó Légtüske-) hajtómű. Ez gyakorlatilag egy "kifordított" fúvócsövet jelent. A fúvócső falának egy szeletét kell elképzelni, ez a hajtómű belső oldala, erre "támaszkodik" a gázáram, túloldalról "nyitott részen" a légnyomás tartja a helyén.

Ahogy csökken a légnyomás, a gázáram elkezd tágulni, terebélyesedni, de megfelelő kialakítás esetén egy ilyen hajtómű a tengerszinttől a világűrig közel ideálisan használhatja ki a gázáram erejét, kis magasságban akár 25%-al is hatékonyabb lehet ezáltal, mint a hagyományos kialakítású megoldás. Ennek persze ára van, az Aerospike hajtómű által elérhető tolóerő kisebb lehet, mint egy hasonló méretű / tömegű hagyományos, harang alakú fúvócsővel rendelkező hajtóműé.


Egy aerospike hajtómű gázáramának alakulása tengerszinten (balra), optimális magasságban (középen) és vákumban (jobbra)

A Rocketdyne cég az 1960-as években ennek az ígéretes megoldásnak a tökéletesítését tűzte ki célul, míg a versenytársai, az Aerojet és a Pratt & Whitney a hagyományos, harang alakú kialakítás mellett maradtak, elfogadva annak hibáit, viszont kihasználva az időközben már összegyűjtött tapasztalatokat.

1969. októberében az előzetes megoldásokat mérlegelve a NASA úgy döntött, hogy marad a hagyományos megoldásnál, vagyis az Rocketdyne éveken át egy olyan technológia fejlesztésébe fektette az erőforrásait, amelyre végül nem tartottak a legfontosabb vevők igényt…


XRS-2200 teljes tolóerejű teszt

A sors fintora, hogy az aerospike hajtómű 30 évvel később az X-33 / Venture Star program kapcsán újra előkerült, és az ekkor már a Boeing leányvállalataként működő Rocketdyne meg is építette az XRS-2200 aerospike hajtóművet, ám az végül az X-33 program törlése miatt csak a földön lett tesztelve.

1970. februárjában a három cég 6-6 millió dollárt kapott a NASA-tól, hogy részletesen kidolgozzák a saját változatukat az SSME hajtóműre. A NASA elvárása vákuumban 415 000 fontos (188 824 kg-os) tolóerő, ami csaknem kétszerese az addigi legerősebb folyékony hidrogént égető hajtóműnek, a J-2-nek. A kiáramló gáz sebességénél 14 760 láb / másodperc (~4450 m/s), az égéstérben lévő nyomásnak pedig 3 000 psi (~204 atm) határoztak meg. A hajtóműtől 10 órás élettartamot és 100 repülést vártak el, igaz ez utóbbit a hagyományos, már meglévő hajtóművek is képesek voltak teljesíteni. A J-2-es hajtóművel 105 tesztgyújtást csináltak, és ez idő alatt összesen 6,5 órán keresztül működött.

A Pratt & Whitney az XLR-129 jelölésű hajtóművön dolgozott már egy ideje, amely 350 000 font tolóerő elérésére kalibráltak, alapvetően ennek egy megerősített, átdolgozott változatát szánták az SSME tenderre. Az XLR-129 a légnyomás által jelentett problémát frappáns megoldással orvosolta: a fúvócső normál helyzetben a sűrű légkörben való repüléshez volt ideális, amikor pedig a magasabb légrétegekbe ért, egy kiegészítő "szoknya" ereszkedett alá, meghosszabbítva és kibővítve a fúvócsövet, amely így már az alacsony légnyomáshoz idomult.


Az XLR-129 rajza, a kiegészítő fúvócső toldat felső állásban

További érv volt mellettük, hogy ők dolgoztak a NASA számára egy olyan turbopumpán, amelynek a fajlagos teljesítménye 100 lóerő per font, vagyis hozzávetőleg 220 lóerő per kilogramm. A nagyteljesítményű rakétahajtóművek olyan iszonyatos mennyiségű üzemanyagot és oxidálószert égetnek ugyanis el viszonylag rövid idő alatt, hogy brutális teljesítményű turbopumpákra van szükség az üzemanyag szivattyúzásához. Ezek a turbopumpák gyakorlatilag egy kis méretű (de igen erős) gázturbinából és a hozzájuk csatolt szivattyúból állnak.

A teljesítményűk a Saturn V. esetén a 60 000 lóerőt is elérte, de az űrrepülőgéphez még ennél is erősebbre, 75 000 lőerősre lett volna szükség, ráadásul mivel a tömeg továbbra is kritikus tényező, ezért minél könnyebbnek kellett lennie. Ezek mellett már csak habnak számítanak a tortán az olyan ínyencségek, minthogy a vörösen izzó turbinarésztől mindössze egy méterre van a közel abszolút nulla fokú anyagot szállító szivattyú, ami miatt a tengely csapágyainak kenőanyag nélkül kell elviselnie a percenkénti 35 000 fordulatot - hiszen a forró oldalon egyből elpárologna bármilyen kenőanyag, míg a fagyos oldalon egyszerűen megszilárdulna. A Pratt & Whitney pedig kvázi a kezében tartott egy ilyen turbószivattyút is, vagyis igencsak kellemes pozícióból várt a döntéshozatalra...


A J-2 hidrogén-turboszivattyúja; a bal oldalán 1500, a jobb oldalán -254 Celsius fok.

A Rocketdyne az aerospike-fiaskó után nem zuhant magába, hanem megbízták a J-2 hajtómű kifejlesztését irányító Paul Castenholzot, hogy vegye a szárnyai alá az SSME tendert. Mivel a legfőbb konkurens komoly előnnyel indult a versenyben, ezért ő úgy döntött, hogy a tenderre beadandó anyagnak szó szerint kézzel foghatónak kell lennie, mert pusztán papírra felvetett számhalmazzal nehéz lesz győzni. Akármennyire is lehet az anyag kidolgozott és hibátlan, meg kell győzni a NASA döntéshozóit, ahhoz pedig elképzeléseknél több kell.

Egy, a kívánalmaknak megfelelő turbopumpa megtervezése és kivitelezése a szűkös időkeret miatt valószínűtlen volt, így egy teszthajtómű megépítése mellett döntött. Csakhogy ehhez több pénzre volt szüksége, ezért a Rocketdyne (illetve az akkori tulajdonos, a Rockwell) vezetéséhez fordult, hogy további 3 millió dollárt igényeljen a cég pénzéből, amit végül jóvá is hagytak (a NASA által biztosított 6 milliót nem lehetett ilyen célra felhasználni).


Paul Costenholz, és a Rocketdyne SSME teszthajtóműve

Noha Castenholz csapata sem a nulláról kezdte a munkát, komoly kihívás volt ilyen rövid idő alatt megépíteni egy hajtóművet. A mérnökök szó szerint beköltöztek a céghez, jobb híján a kórházrészleg ágyain aludtak több hónapon keresztül. (Castenholznak - és lehet többeknek még rajta kívül - a házassága is ráment erre.) Ám végül megcsinálták, elkészültek egy életnagyságú hajtóművel, amellyel ugyan túl sok tesztet már nem tudtak végrehajtani, de éppen elég anyagot sikerült gyűjteniük ahhoz, hogy elégedetten hátradőlhessenek.

Különösen annak a fényében, hogy 1970-ben a NASA megemelte a hajtómű tolóerejére vonatkozó igényeit, immár 550 000 font (~249 475 kg) tolóerőt kértek az SSME-től. A Rocketdyne teszthajtóműve noha 415 000 fontra volt tervezve, nagyon rövid ideig elérte az 505 000 font (229 064 kg) tolóerőt, tehát viszonylag közel voltak a kitűzött célhoz, míg a Pratt & Whitney csak 350 000 fontnál (158 757 kg) járt még.

Ezt az előnyt megfejelték egy olyan bemutatóval, ahol lenyűgözték a NASA döntéshozóit. Egy teremben nem csak fotókat, de hanggal együtt felvett videófelvételeket, sőt, lassított felvételeket mutattak be a hajtóműtesztekről. Olyan hatásvadász megoldásokkal is éltek, hogy amikor Costenholz például azt ecsetelte, hogy a teszteket télen kellett lefolytatni, akkor a háta mögé egy havas sivatagi táj képét vetítettek. Az egyik szemtanú csak úgy jellemezte, hogy ez volt az életében látott legjobb prezentáció, de a leglényegesebbnek mégis Eberhard Rees kijelentése tekinthető, mely szerint "most már elhiszem, hogy meg tudjuk csinálni".


A Rocketdyne SSME teszthajtóműve működés közben

1971. júliusában a SSME megépítésére vonatkozó szerződést a NASA illetékesei a Rocketdyne-nak ítélték. Természetesen a Pratt & Whitney nem hagyhatta annyiban a dolgot, 100 oldalas kérvényt nyújtottak be a kormányzati költségvetési ellenőrző irodának, amelyben a döntést kritizálták. A lobbizás gőzerővel folyt, a floridai székhelyű cég mindkét floridai kongresszusi képviselőt meggyőzte, hogy forduljanak levélben Nixon elnökhöz, hogy felülről számukra kedvezően változtassák meg a NASA döntését.

Itt egy kicsit elkalandoznánk az Egyesült Államok működési rendszerébe. A tagállamok a központi forrásokból nem sokat látnak közvetlenül, de az állami megrendelések mindigis a legzsírosabb falatok közé tartoztak. Éles lobbiharc folyt, folyik és fog még sokáig folyni Washingtonban az ilyen döntéseknél, hogy olyan cég nyerje az állami megrendelést, amely a gyártást a képviselő tagállamába szándékozik vinni. Ezáltal ugyanis munkahelyek teremtődnek, illetve közvetve adóbevételhez juthat a tagállam. A fenti esetben Nixon talán azért nem avatkozott be, mert tisztában volt vele, hogy Florida kevesebb elektori szavazatot jelent, mint Kalifornia, ahol a Rocketdyne székhelye volt, márpedig ekkor már zajlott az 1972-es elnökválasztási kampány, ahol Nixon az újraválasztásáért indult (amit meg is nyert).

Listázás a fórumban 
Adatvédelmi beállítások